Search results for "phase behavior"
showing 10 items of 26 documents
Stability of Asymmetric Lipid Bilayers Assessed by Molecular Dynamics Simulations
2009
The asymmetric insertion of amphiphiles into biological membranes compromises the balance between the inner and outer monolayers. As a result, area expansion of the receiving leaflet and curvature strain may lead to membrane permeation, shape changes, or membrane fusion events. We have conducted both atomistic and coarse-grained molecular dynamics simulations of dipalmitoyl-phosphatidylcholine (DPPC) bilayers to study the effect of an asymmetric distribution of lipids between the two monolayers on membrane stability. Highly asymmetric lipid bilayers were found to be surprisingly stable within the submicrosecond time span of the simulations. Even the limiting case of a monolayer immersed in …
The Alignment of Membrane-Active Peptides Depends on the Lipid Phase State as Viewed by solid state 19F-NMR
2009
Amphipathic membrane-active peptides (antimicrobial, hemolytic, cell-penetrating, fusogenic, etc.) achieve their functions by distinct interaction with lipid bilayers. Some typical structural modes are described in terms of models like the “barrel stave”, “toroidal pore”, “carpet” etc. These models are related to the alignment states of the peptides in the lipid bilayers (surface bound “S-state”, inserted “I-state” or tilted “T-state”), which can be readily characterized by solid state NMR. When determining such alignment, factors like peptide/lipid ratio, charge of the bilayer surface, thickness of the bilayer core, presence of cholesterol, and humidity are typically investigated. Yet, the…
An enzyme caught in action: Direct imaging of hydrolytic function and domain formation of phospholipase A2 in phosphatidylcholine monolayers
1989
AbstractPhospholipase A2, a ubiquitous lipolytic enzyme that actively catalyses hydrolysis of phospholipids, has been studied as a model for enzyme-substrate reactions, as a membrane structural probe, and as a model for lipid-protein interactions. Its mechanism of action remains largely controversial. We report here for the first time direct microscopic observation of the lipolytic action of fluorescently marked phospholipase A2 (Naja naja naja) against phosphatidylcholine monolayers in the lipid phase transition region. Under these conditions, phospholipase A2 is shown to target and hydrolyse solid-phase lipid domains of L-α-dipalmitoylphosphatidylcholine. In addition, after a critical ext…
Improved stability of black lipid membranes by coating with polysaccharide derivatives bearing hydrophobic anchor groups
1986
Abstract Black lipid membranes were coated with modified polysaccharides bearing hydrophobic palmitoyl and cholesteryl moieties. The changes in membrane structure were investigated using dipicrylamine, a lipophilic ion, as membrane probe. The kinetics of ion transport through the black lipid membranes were studied using the charge pulse relaxation technique. With this technique it was found that it is possible to detect the insertion of the hydrophobic anchor groups of the polysaccharides into the membrane bilayer. As a result of the surface coating, these membranes exhibit a drastically increased long-term stability.
Polymerization in black lipid membranes. Influence on ion transport
1986
A variety of different lipids containing dienoyl groups in the side chains were tested for membrane formation using the planar lipid bilayer approach. One of these lipids formed stable bilayers which could be polymerized using UV-illumination. The influence of the polymerization was studied in monolayers, lipid vesicles and planar bilayers. The stability of the lipid bilayer membranes was increased by polymerization. Thus, the lifetime of the membranes increased from about 1 h to 4–5 h or longer. Furthermore, the specific conductance of unmodified membranes and of carrier-mediated transport is reduced. The transport of lipophilic ions was investigated as a function of polymerization using t…
Structure Of Complexes Of Helix-5 From Bax With Lipid Membranes
2009
Bax is a proapoptotic protein implicated in the release of cell-death activating factors from the mitochondrial intermembrane space. Although the structure of the membrane-bound forms of Bax is unknown, it has been proposed to form proteolipidic pores. Studies with synthetic lipid vesicles have shown that fragments encompassing helix-5 of Bax retain a membrane permeabilization ability that is similar to that of the full-length protein. Here we report on the structure of peptide-membrane complexes formed by a Bax helix-5 peptide and lipid bilayers. The relative orientation of the peptide and the lipids are determined using site-specific infrared spectroscopy, assisted by isotopic labeling of…
Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane
1997
Abstract The release of a nonsteroidal anti-inflammatory drug (NSAID), 4-biphenylacetic acid (BPAA), from α,β-poly( N -hydroxyethyl)- dl -aspartamide (PHEA) hydrogels was tested at different pHs (4 and 7.4) by measuring the drug transfer from loaded hydrogel to dimyristoylphosphatidylcholine (DMPC) liposomes (multilamellar vesicles, MLV), chosen as a biomembrane model. This drug transfer was compared with the transfer from powdered drug and with drug classical. The perturbing effect of pure BPAA on the thermotropic behaviour of DMPC liposomes, in terms of transition temperature shift (Δ T m ) and enthalpy changes (Δ H ), was analysed at different pHs (4 and 7.4) by differential scanning cal…
Coagulation bath composition and desiccation environment as tuning parameters to prepare skinless membranes via diffusion induced phase separation
2015
Diffusion Induced Phase Separation (DIPS) is a currently used technique to produce porous membranes for a large variety of applications. A strong limitation is represented by the occurrence of a dense skin, which is formed during the process, highly reducing the membrane permeability. To overcome this issue, two modifications of the standard DIPS protocol were investigated: the use of coagulation baths composed by a solvent/nonsolvent mixture and the desiccation in a controlled environment, by modulating the partial pressure of nonsolvent vapor. An appropriate choice of coagulation bath composition, together with an appropriate desiccation protocol (i.e., the use of a nonsolvent vapor), wil…
The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis.
2008
AbstractMost biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in mem…
Regulation of Calcium Channel Activity by Lipid Domain Formation in Planar Lipid Bilayers
2003
The sarcoplasmic reticulum channel (ryanodine receptor) from cardiac myocytes was reconstituted into planar lipid bilayers consisting of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) in varying ratios. The channel activity parameters, i.e., open probability and average open time and its resolved short and long components, were determined as a function of POPE mole fraction (X(PE)) at 22.4 degrees C. Interestingly, all of these parameters exhibited a narrow and pronounced peak at X(PE) approximately 0.80. Differential scanning calorimetric measurements on POPE/POPC liposomes with increasing X(PE) indicated that the lipid bilayer ente…